Математика Реферат Точные науки

Реферат на тему Теорема Пифагора и её практическое применение

  • Оформление работы
  • Список литературы по ГОСТу
  • Соответствие методическим рекомендациям
  • И еще 16 требований ГОСТа,
    которые мы проверили
Нажимая на кнопку, я даю согласие
на обработку персональных данных
Фрагмент работы для ознакомления
 

Содержание:

 

ВВЕДЕНИЕ 3

1.Теорема пифагора — краткая история 4

2. Доказательство теоремы 5

3. Примеры решения задач 10

4. Практическое применение теоремы 11

ЗАКЛЮЧЕНИЕ 16

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ 17

  

Введение:

 

ВВЕДЕНИЕ

Трудно найти человека, для которого имя Пифагора не ассоциировалось бы с его теоремой. Почти у каждого сохранились воспоминания о «пифагоровых штанах» — квадрате на гипотенузе, равновеликом двум квадратам на катетах.

Причина такой популярности теоремы Пифагора очевидна: простота, красота и широкая значимость. Однако теорема Пифагора проста, но не так очевидна. Это сочетание двух противоречивых начал и придает ей особую притягательную силу, делает ее красивой. Кроме этого, теорема Пифагора имеет огромное значение: она применяется в геометрии буквально на каждом шагу, и тот факт, что существует около 500 различных доказательств этой теоремы (геометрических, алгебраических, механических и т.д.) свидетельствует о гигантском числе ее конкретных реализаций. Зная теорему Пифагора, можно находить ее новые применения и способы доказательств.

С одной стороны – теорема Пифагора изучается и доказывается в школьном курсе геометрии, а с другой стороны — школьного материала явно недостаточно для того, чтобы показать ее практическую значимость в различных, в том числе и современных сферах деятельности человека.

Цель работы: Изучение практического применения теоремы Пифагора.

Задачи работы:

1. Изучение истории появления и развития теоремы Пифагора.

2. Рассмотрение доказательства теоремы Пифагора.

3. Изучить практическое применение теоремы.

Основные методы исследования: Метод исследования, систематизации и обработки данных.

Объект исследования: практическое применение теоремы Пифагора в современной деятельности человека.

Предмет исследования: теорема Пифагора

Не хочешь рисковать и сдавать то, что уже сдавалось?!
Закажи оригинальную работу - это недорого!

Заключение:

 


В результате исследования выяснили некоторые области применения теоремы Пифагора. Мной собрано и обработано много материала из литературных источников и интернета по данной теме. Изучила некоторые исторические сведения о Пифагоре и его теореме. Да, действительно, с помощью теоремы Пифагора можно решать не только математические задачи. Теорема Пифагора нашла свое применение в строительстве и архитектуре, мобильной связи, литературе.

В целом, значение теоремы, кроме вышесказанного, заключается в том, что она применяется практически во всех современных технологиях, а также открывает простор для создания и придумывания новых.

 

Фрагмент текста работы:

 

1.Теорема Пифагора — краткая история

Соотношение между сторонами прямоугольного треугольника в том или ином виде было известно многим древним цивилизациям (египетской, шумерской и др.), но первая известная формулировка принадлежит греческому философу и математику Пифагору в V в. до н.э. Об этом известно из труда «Начала», который написал Евклид приблизительно в 300 г. до н. э.

Теорема Пифагора используется для доказательства многих других теорем геометрии. Математиками разработано несколько обобщений, например, для произвольных треугольников, для многомерных пространств. При этом, теорема Пифагора выполняется только в евклидовых геометриях, в иных случаях она не действует. [4]

Формулировка теоремы. Изначальная (геометрическая) формулировка Пифагора гласила:

Теорема. В прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах.

Позднее появился алгебраический вариант:

Теорема. В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.

Оба этих определения эквивалентны. Алгебраическое более элементарно, так как оно не оперирует понятием площади, поэтому теорему в этом виде можно проверить просто – измерив длину гипотенузы и катетов, сделав затем необходимое вычисление.

Уравнение

В виде формулы теорема Пифагора записывается следующим образом:

a2+b2=c2, где:

• а и b – длины двух катетов,

• с – длина гипотенузы. [2]

Важно! Это только фрагмент работы для ознакомления
Скачайте архив со всеми файлами работы с помощью формы в начале страницы

Похожие работы