Реферат на тему Оперативная память
-
Оформление работы
-
Список литературы по ГОСТу
-
Соответствие методическим рекомендациям
-
И еще 16 требований ГОСТа,которые мы проверили
Введи почту и скачай архив со всеми файлами
Ссылку для скачивания пришлем
на указанный адрес электронной почты
Содержание:
Введение 3
1. Оперативная память компьютера: назначение и основные функции 5
1.1. Назначение и основной функционал оперативной памяти компьютера 5
2. Принцип действия и технология работы ОЗУ 7
2.1. Схема взаимодействия центрального процессора с оперативной памятью 7
2.2. Принципы работы современных микросхем памяти 12
3. Ключевые параметры и характеристики ОЗУ 14
3.1. Классификация оперативной памяти 14
3.2. Критерии оценки работы и выбора ОЗУ 17
Заключение 19
Глоссарий 20
Список использованной литературы 21
Введение:
Любой компьютер состоит из трех основных компонентов – процессора, памяти и устройств ввода-вывода. При этом оперативная память компьютера у многих пользователей является первым понятием, которое приходит на ум, когда речь заходит о памяти вообще. Строго говоря, существует две разновидности памяти – постоянная и временная. И временная память компьютера – это и есть оперативная память.
У оперативной памяти много названий. Оперативное запоминающее устройство (ОЗУ) определяет назначение — запоминать и хранить временную информацию, требующуюся процессору при выполнении операций. Английская аббревиатура RAM (Random Access Memory) означает память с произвольным доступом, то есть запрос к требуемой ячейке памяти происходит напрямую, другие блоки не затрагиваются. Также этот вид памяти называют энергозависимым, а значит, данные сохраняются в ней до тех пор, пока включено устройство, в котором она установлена. В разговорах ИТ-специалистов фигурирует слово «оперативка», но чаще всего это просто «память»: компьютера, телефона, серверная и пр.
В эпоху господства компьютеров семейства XT/AT господствовали микросхемы памяти форм-фактора DIP. Эта память представляла собой отдельную микросхему, которую нужно было вставлять в горизонтальном положении в специальный разъем на материнской плате. Оперативная память формата DIP, однако, имела несколько существенных недостатков. Во-первых, микросхема не очень крепко держалась в своем гнезде, и поэтому часть ее контактов могла не действовать, что приводило к ошибкам памяти. Кроме того, подобные микросхемы имели небольшую емкость и неэффективно использовали свободное пространство материнской платы.
Недостатки технологии DIP побудили конструкторов к разработке модулей памяти форм-фактора SIMM (Single-in-line Memory Module). Первые SIMM появились еще в системах AT. В отличие от DIP модули SIMM, как и современные DIMM, представляли собой длинные модульные платы, к которым были в один ряд прикреплены микросхемы памяти, и которые можно было вставлять в специальный разъем на материнской плате в вертикальном положении.
В разные годы выпускалось два типа SIMM – 8-разрядные SIMM c 30 контактами и более поздний вариант, впервые появившийся в системах на базе 486-х процессоров – 32 разрядные модули c 72-разъемами.
Модули SIMM необходимо было вставлять не как угодно, а таким образом, чтобы заполнялись так называемые банки памяти. Разрядность банка памяти соответствовала разрядности шины адреса процессора. Для заполнения банка памяти в компьютерах с 16-разрядной шиной минимальное количество модулей SIMM составляло два 8-разрядных модуля, а в компьютерах с 32-разрядной шиной их требовалось уже 4.
Модули типа SIMM стали выходить из употребления уже в системах на базе первого Pentium. Вместо них конструкторами был разработан модуль DIMM. Как можно догадаться из названия («двухсторонний модуль памяти»), этот модуль имеет два ряда контактов с обеих сторон, в то время, как в SIMM фактически был всего один ряд контактов.
Помимо этого, модуль DIMM отличается технологией изготовления самих микросхем, устанавливаемых на нем. Если до появления DIMM использовались микросхемы типа EDO или FPM, то в DIMM используется более новая технология Synchronous DRAM. Кроме того, модули DIMM имеют встроенную микросхему контроля четности памяти.
Модуль DIMM первого поколения, в отличие от SIMM, имел 168 контактов, а также специальный ключ в разъеме, исключающий неправильную установку модуля.
Второе поколение DIMM, основанное на технологии DDR SDRAM, имело уже 184 контакта. Следующие поколения – современные DDR2 и DDR3 могут похвастаться наличием 240 контактов.
Говоря о современном типе используемой памяти, в первую очередь имеется ввиду ставшая настоящим технологическим прорывом DDR SDRAM, которая во многом предопределила дальнейшее развитие технологий оперативной памяти.
Целью данной работы является изучение оперативной памяти компьютера.
Заключение:
Исходя из рассмотренного в работе материала, можно сделать вывод о том, что Оперативная память (ОЗУ, Random Access Memory – RAM, память с произвольным доступом) – запоминающее устройство сравнительно небольшого объёма, которое непосредственно связано с ЦП и предназначено для записи, чтения и хранения данных о выполняемых программах и данных, обрабатываемых этими программами. Оперативная память используется только для временного хранения данных и программ, т.к. при выключении ПК информация, которая находилась в ОЗУ, пропадает. Доступ к элементам оперативной памяти прямой, то есть каждый байт памяти имеет свой индивидуальный адрес.
Оперативная память, или оперативное запоминающее устройство персонального компьютера – один из важнейших его компонентов. Основное назначение оперативной памяти – временное хранение текущих данных. Оперативная память предоставляет необходимое пространство для работы прикладных программ и операционной системы. От объема и скорости работы модулей оперативной памяти во многом зависит скорость работы и производительность всего компьютера.
Оперативная память (которую также иногда называют ОЗУ, что означает «оперативное запоминающее устройство») является самым большим временным хранилищем данных в компьютере. По сравнению с кэш-памятью ОЗУ обладает гораздо большим объемом, но в то же время, и меньшим быстродействием. Однако быстродействие ОЗУ, тем не менее, вполне достаточно для выполнения текущих задач прикладных программ и операционной системы.
Информация, которую содержит оперативная память не сохраняется постоянно и после выключения питания компьютера бесследно исчезает, если, разумеется, пользователь не успел сохранить ее в постоянной, то есть, на жестком диске или каком-либо сменном носителе. Однако временная память имеет одно большое преимущество перед постоянной – это высокое быстродействие. В частности, оперативная память работает в несколько сот тысяч раз быстрее, чем жесткий диск. Именно поэтому во временной памяти хранятся динамично меняющиеся данные и программы, которые запускаются в течение сессии работы операционной системы.
Фрагмент текста работы:
1. Оперативная память компьютера: назначение и основные функции
1.1. Назначение и основной функционал оперативной памяти компьютера
В компьютере помимо оперативного установлено и постоянное запоминающее устройство — ПЗУ, более известное как жесткий диск или винчестер. Это энергонезависимый тип памяти, который сохраняет всю информацию даже после отключения питания компьютера. Для выполнения работы центральному процессору требуется информация, хранящаяся на жестком диске. Данные копируются с винчестера в своеобразный буфер, которым и является оперативная память, а по окончании работы, после сохранения (если требуется) измененных данных обратно на винчестер, ОЗУ очищается. Кроме процессора информацию, хранящуюся в оперативной памяти, с целью быстродействия могут использовать другие компоненты системы — видеокарта и т.д.
Таким образом, можно говорить о том, что оперативная память ускоряет процесс взаимодействия ЦПУ с винчестером, и соответственно приводит к увеличению производительности оборудования в целом. Поэтому важно понимать, какие именно параметры оперативной памяти позволят добиться наибольшей эффективности, а при каких условиях система вовсе не станет функционировать.
Основные свойства оперативной памяти :
• Минимальная адресуемая единица информации – 1 байт.
• Каждый байт имеет свой уникальный адрес, то есть память прямоадресуема.
• Для выбора данных процессор обращается непосредственно к последовательности байтов, содержащей нужные данные.
Оперативная память выполняет функцию временного хранения данных и команд, которые необходимы процессору для выполнения определённых операций. Поступление данных в оперативную память происходит напрямую или через сверхбыструю память. Вся информация хранятся только при включенном компьютере, а после его выключения все данные стираются.
В процессе выполнения программы некоторые из её ее наиболее важных файлов загружаются в оперативную память (ОЗУ), сохраняясь до тех пор, пока приложение не будет закрыто. А сам процессор напрямую выполняет эти файлы, сохраняя результаты. В памяти хранятся все коды нажатых клавиш и величины проведённых математических операций. После выполнения команды «Save» всё, что находится в ОЗУ, сохраняется на жесткий диск.
В настоящее время микросхемы ОЗУ изготавливаются на основе технологии динамической памяти (DRAM, или Dynamic Random Access Memory). Динамическая память, в отличие от статической, которая используется в кэш-памяти, имеет более простое устройство, и, соответственно ее цена на единицу объема гораздо ниже. Для хранения одной единицы информации (одного бита) в DRAM используется всего лишь один транзистор и один конденсатор.
Помимо этого, особенностью динамической памяти является ее постоянная потребность в периодической регенерации содержимого. Эта особенность обусловлена тем, что конденсаторы, обслуживающие ячейку памяти, очень быстро разряжаются, и поэтому через определенное время их содержимое необходимо прочитать и записать заново. Данная операция в современных микросхемах осуществляется автоматически через определенный промежуток времени, при помощи контроллера микросхемы памяти.
Максимальный объем доступной оперативной памяти, которую можно установить в системе, определяется разрядностью шины адреса процессора. С появлением 32-разрядных процессоров этот объем был равен 4 ГБ. Современные 64-разрядные процессоры способны поддерживать адресное пространство ОЗУ в 16 ТБ. Это цифра представляется сейчас совершенно фантастической, но ведь когда-то и цифра в 4 ГБ для ОЗУ казалась абсолютно невероятной, а сегодня 32-разрядные системы уже уперлись в этот потолок, ограничивающий их возможности.
Как и в случае процессора, скорость работы ОЗУ во многом определяется ее тактовой частотой. Тактовая частота современных микросхем памяти типа DDR3 в среднем составляет примерно 1600 МГц.