Реферат на тему Класическая теория электропроводимости металов (закон Ома по ней)
-
Оформление работы
-
Список литературы по ГОСТу
-
Соответствие методическим рекомендациям
-
И еще 16 требований ГОСТа,которые мы проверили
Введи почту и скачай архив со всеми файлами
Ссылку для скачивания пришлем
на указанный адрес электронной почты
Содержание:
ВВЕДЕНИЕ 3
1. КЛАССИЧЕСКАЯ ТЕОРИЯ ЭЛЕКТРОПРОВОДИМОСТИ МЕТАЛЛОВ 5
2. ОБЪЯСНЕНИЕ ЗАКОНА ОМА 12
ЗАКЛЮЧЕНИЕ 15
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 16
Введение:
Современным людям (даже не особо разбирающимся в физике) закон Ома кажется простым: чем больше напряжение в проводнике, тем сила тока выше, чем больше сопротивление проводника, тем она ниже. Однако в первой половине XIX в. никто понятия не имел, из чего «сделан» ток, что влияет на его скорость, силу и т. д.
До 1840-х ученые полагали, будто проводник никоим образом не участвует в движении тока. Немецкий физик Георг Симон Ом (1789-1854) был первым, кто в этом усомнился и потому решил измерить силу тока.
К концу XIX в. ученые знали связь между электрическим сопротивлением, силой тока и напряжением, которая описывается законом Ома. Благодаря эффекту Холла знали они и то, что носителями электрического тока в металлах являются отрицательно заряженные электроны.
Оставалось составить описание электрического сопротивления на атомном уровне. Первую попытку такого рода предпринял в 1900 году немецкий физик Пауль Друде.
Классическая теория электропроводности металлов зародилась в начале ХХ века. Её основоположником стал немецкий физик Карл Рикке. Он опытным путем установил, что прохождение заряда через металл не сопряжено с переносом атомов проводника, в отличие от жидких электролитов.
Однако это открытие не объяснило, что именно является носителем электрических импульсов в структуре металла.
Ответить на это вопрос позволили опыты ученых Стюарта и Толмена, проведенные в 1916 году. Им удалось установить, что за перенос электричества в металлах отвечают мельчайшие заряженные частицы — электроны. Это открытие легло в основу классической электронной теории электропроводности металлов.
С этого момента началась новая эпоха исследований металлических проводников. Благодаря полученным результатам мы сегодня имеем возможность пользоваться бытовыми приборами, производственным оборудованием, станками и многими другими устройствами.
Электронная теория электропроводности металлов получила развитие в исследованиях Паулю Друде. Он сумел открыть такое свойство как сопротивление, которое наблюдается при прохождении электрического тока через проводник.
В дальнейшем это позволит классифицировать разные вещества по уровню проводимости. Из полученных результатов легко понять, какой металл подойдет для изготовления того или иного кабеля.
Открытие электропроводности стало первым шагом к глубокому изучению свойств металлических проводников тока, вследствие чего была создана теоретическая база для конструирования бытовой и производственной техники, которая является неотъемлемой частью современной жизни.
Целью данной работы является изучение классической теории электропроводимости металлов.
Для достижения данной цели были поставлены следующие задачи:
1. Изучить классическую теорию электропроводимости металлов;
2. Рассмотреть объяснение закона Ома.
Реферат состоит из введения, двух глав, заключения и списка использованной литературы.
Заключение:
Основные положения теории электропроводности металлов содержат шесть пунктов:
— высокий уровень электропроводности связан с наличием большого числа свободных электронов;
— электрический ток возникает путем внешнего воздействия на металл, при котором электроны из беспорядочного движения переходят в упорядоченное;
— сила тока, проходящего через металлический проводник, рассчитывается по закону Ома;
— различное число элементарных частиц в кристаллической решетке приводит к неодинаковому сопротивлению металлов;
— электрический ток в цепи возникает мгновенно после начала воздействия на электроны;
— с увеличением внутренней температуры металла растет и уровень его сопротивления.
Природа электропроводности металлов объясняется вторым пунктом положений. В спокойном состоянии все свободные электроны хаотическим образом вращаются вокруг ядра. В этот момент металл не способен самостоятельно воспроизводить электрические заряды. Но стоит лишь подключить внешний источник воздействия, как электроны мгновенно выстраиваются в структурированной последовательности и становятся носителями электрического тока. С повышением температуры электропроводность металлов снижается.
Исходя из всего вышесказанного, цели данной работы можно считать достигнутыми, а задачи выполненными.
Фрагмент текста работы:
1. КЛАССИЧЕСКАЯ ТЕОРИЯ ЭЛЕКТРОПРОВОДИМОСТИ МЕТАЛЛОВ
Теория Друде была разработана в 1900 г., через три года после открытия электрона. Затем теория была доработана Лоренцом, и сейчас она является классической и актуальной теорией проводимости металлов [1].
Согласно теории, носителями тока в металлах являются свободные электроны.
Друде предположил, что электроны в металле подчиняются и могут быть описаны уравнениями молекулярно-кинетической теории. Другими словами, свободные электроны в металле подчиняются законам МКТ и образуют «электронный газ».
Двигаясь в металле, электроны соударяются между собой и с кристаллической решеткой (это и есть проявление электрического сопротивления проводника). Между соударениями электроны, по аналогии с длиной свободного пробега молекул идеального газа, успевают преодолеть средний путь λ.
Без действия электрического поля, ускоряющего электроны, кристаллическая решетка и электронный газ стремятся к состоянию теплового равновесия.
Приведем основные положения теории Друде [10]:
— Взаимодействие электрона с другими электронами и ионами не учитывается между столкновениями.
— Столкновения являются мгновенными событиями, внезапно меняющими скорость электрона.
— Вероятность для электрона испытать столкновение за единицу времени равна 1/τ.
— Состояние термодинамического равновесия достигается благодаря столкновениям.
Несмотря на множество допущений, теория Друде-Лорецна хорошо объясняет эффект Холла, явление удельной проводимости и теплопроводность металлов. Именно поэтому она актуальна по сей день, хотя ответы на многие вопросы (например, почему в металле существуют свободные ионы и электроны) смогла дать только квантовая теория твердого тела.
В рамках теории Друде объясняется сопротивление металлов. Оно обусловлено соударениями электронов с узлами кристаллической решетки.
Выделение тепла, согласно закону Джоуля-Ленца, также происходит по причине соударения электронов с ионами решетки.
Теплопередача в металлах также осуществляется электронами, а не кристаллической решеткой.
Теория Друде не объясняет многих явлений, как например сверхпроводимость, и не применима в сильных магнитных полях, в слабых магнитных полях может терять применимость из-за квантовых явлений.