Педагогика Курсовая с практикой Педагогика/Психология

Курсовая с практикой на тему Методика ведения понятий рекурсивный алгоритм в курсе школьной информатики

  • Оформление работы
  • Список литературы по ГОСТу
  • Соответствие методическим рекомендациям
  • И еще 16 требований ГОСТа,
    которые мы проверили
Нажимая на кнопку, я даю согласие
на обработку персональных данных
Фрагмент работы для ознакомления
 

Содержание:

 

ВВЕДЕНИЕ 3
ГЛАВА 1. ИЗУЧЕНИЕ РЕКУРСИВНОГО АЛГОРИТМА В КУРСЕ ШКОЛЬНОЙ ИНФОРМАТИКИ 5
1.1. Анализ школьных учебников информатики 5
1.2. Теоретические основы рекурсивных алгоритмов 7
ГЛАВА 2. РАЗРАБОТКА ПРАКТИЧЕСКИХ ЗАНЯТИЙ ПО ИЗУЧЕНИЮ РЕКУРСИВНОГО АЛГОРИТМА 17
2.1. Методические рекомендации 17
2.2. Техническая карта урока по рекурсивному алгоритму 18
2.3. Конспект урока «Теория рекурсии» 23
2.4. Конспект урока «Рекурсивные алгоритмы» 26
ЗАКЛЮЧЕНИЕ 29
ЛИТЕРАТУРА 31
ПРИЛОЖЕНИЯ 32
Приложение 1. 32
Приложение 2. 33
Приложение 3. 38

  

Введение:

 

Актуальность исследования. Эффективным способом формирования алгоритмического мышления школьников в курсе информатики и информационно-коммуникационных технологий (ИКТ) является обучение построению рекурсивных алгоритмов и их использованию при решении большого класса задач из раздела алгоритмизации и программирования, а также теории алгоритмов. Однако в УМК по информатике теме рекурсивных алгоритмов уделено мало внимания. Эту тему школьники проходят обзорно. Сам рекурсивной алгоритм исползают для решения нескольких стандартных задач, для которых ранее рассматривались циклические алгоритмы (вычисление факториала, чисел Фибоначчи и др.). Между тем возможности использования рекурсивных алгоритмов в различных областях человеческой деятельности растут год от года. Поэтому их изучение очень важно для школьников.
Таким образом, возникает противоречие: между значимостью и важностью развития алгоритмического мышления школьников и недостаточной разработанностью способов по его развитию, в том числе недостаточностью использования рекурсивных алгоритмов.
Необходимость разрешения этого противоречия обусловливает актуальность исследования, а также определяет его проблему: как построить программу обучения рекурсивным механизмам в школьном курсе информатике, чтобы повысить эффективность развития алгоритмического мышления школьников.
Объектом исследования является процесс обучения информатике и ИКТ в школе.
Предметом исследования является формирование алгоритмического мышления школьников при обучении рекурсивным алгоритмам.
Целью исследования является разработка и теоретическое обоснование технологии обучения учащихся построению и использованию рекурсивных алгоритмов.
Гипотеза исследования: формированию алгоритмического мышления при обучении информатике будет способствовать дополнение курса информатике сведениями по рекурсивным алгоритмам.
Задачи исследования:
1. Проанализировать УМК Л.Л. Босова, Н.Д. Угринович, И.Г. Семакина и определить место рекурсивных алгоритмов в курсе информатики;
2. Изучить теоретические основы рекурсии;
3. Разработать методические рекомендации по преподаванию рекурсивных механизмов в школьном курсе информатики;
4. Разработать тех. карту и конспекты занятий по рекурсивным алгоритмам.
Практическая значимость работы заключается в том, что она может быть использована для проведения уроков в средней школе, а также для корректировки учебных планов и УМК по информатике.

Не хочешь рисковать и сдавать то, что уже сдавалось?!
Закажи оригинальную работу - это недорого!

Заключение:

 

По итогам разностороннего исследования рекурсивных алгоритмов можно сделать ряд важных выводов.
Во-первых, рекурсивные алгоритмы пригодны для решения разнообразных задач: математических задач рекурсивной природы, для структуризации данных, составления графики, решения игр и головоломок. Кроме того рекурсии используются для парсинга сайтов; операций поиска; разбора текстовой информации; выборке тегов.
Во-вторых, рекурсивные алгоритмы часто имеют более низкую сложность, чем эквивалентные им итерационные. То есть составление рекурсивных алгоритмов не занимает много времени. Рекурсивные алгоритмы понятны и приятны зрительно. Их можно легко корректировать и модифицировать.
Однако рекурсия имеет свои ограничения. Для того чтобы она хорошо работала, необходимо задавать условие остановки рекурсии. Кроме того, решение задач с помощью рекурсии иногда занимает большее количество времени, т.к. происходит вызов большого количества подпроцедур.
Стоит сказать, что технологии не стоят на месте и сейчас уже созданы программные средства, которые способствуют преодолению проблемы низкой эффективности рекурсивных программ.
Таким образом, применение рекурсивных алгоритмов способствует быстрому и качественному решению многих задач.
Нами были проанализированы учебники по информатике и сделан вывод о недостаточности изучения темы рекурсии в школе. В школьном курсе информатике теме рекурсии не уделяется достаточного внимания. В результате, выпускники школы не понимают всех возможностей и преимуществ использования рекурсии.
Поэтому нами было предложено дополнить раздел «Алгоритмизации и программирования» параграфами о рекурсии. Основы рекурсии должны быть изучены ещё в 9 классе. Здесь рекурсия может быть разобрана на простейших примерах (факториал, числа Фибоначчи). В 10 и 11 классах следует изучать рекурсивные алгоритмы подробнее. Разбирать более сложные примеры: использование рекурсии в графике, поиск пути в лабиринте, обход конём шахматной доски. Давать возможность школьникам выполнять самостоятельные творческие задания, составлять рекурсивные алгоритмы на языке Паскаль. Без изучения рекурсии у учащихся не будет сформирована целостная системно-информационная картина мира
Кроме того, нами разработано несколько уроков на тему рекурсии: «Рекурсивные алгоритмы в построении графики», «Рекурсия и рекурсивные алгоритмы на языке программирования Паскаль», Рекурсивные алгоритмы в практическом применении».
В курсовой работе были решены следующие задачи:
Задачи исследования:
1. Проведён анализ УМК Л.Л. Босова, Н.Д. Угринович, И.Г. Семакина и найдено место рекурсивных алгоритмов в курсе информатики;
2. Изучены теоретические основы рекурсии: сущность, выды, способы, примеры;
3. Разработаны методические рекомендации по преподаванию рекурсивных механизмов в школьном курсе информатики;
4. Разработана тех. карта и конспекты занятий по рекурсивным алгоритмам.
Целью исследования, которая заключалась в разработке и теоретическом обосновании технологии обучения учащихся построению и использованию рекурсивных алгоритмов, достигнута.
Гипотеза исследования о том, что формированию алгоритмического мышления при обучении информатике будет способствовать дополнение курса информатике сведениями по рекурсивным алгоритмам, доказана теоретически. Для практического доказательства необходимы дальнейшие исследования и проведение формирующего эксперимента.

   

Фрагмент текста работы:

 

ГЛАВА 1. ИЗУЧЕНИЕ РЕКУРСИВНОГО АЛГОРИТМА В КУРСЕ ШКОЛЬНОЙ ИНФОРМАТИКИ

1.1. Анализ школьных учебников информатики

В школьном курсе информатики рекурсивные процедуры и функции изучаются в 9-11 классах. Сложность рекурсивных алгоритмов приводит к тому, что этой теме практически во всех УМК отводится мало времени. Официальная статистика ЕГЭ показала, что выпускникам школ с трудом дается решение задач с рекурсивными алгоритмами, и лишь 25% могут решить подобные задачи.
В учебнике Н.Д. Угринович за 9 класс есть глава посвящённая основам алгоритмизации и объектно-ориентированному программированию. В параграфе «Кодирование основных типов алгоритмических структур» представлены следующие типы структур: линейные алгоритмы, ветвление, выбор, цикл. Про рекурсивные алгоритме здесь не упоминается вообще.
В учебник за 10 класс включена глава 4 «Алгоритмизация и основы объектно-ориентированного программирования». В этой главе в параграфе «Подпрограммы. Рекурсивные алгоритмы» рассматривается термин «рекурсия» и «рекурсивные алгоритмы». В качестве примера использования этого механизма используется факториал. Теме рекурсивных алгоритмов посвящено всего 2 страницы. Таким образом, в учебник Н.Д. Угринович не позволяет школьникам понять и использовать при создании собственных алгоритмов рекурсивный аппарат.
В учебнике Л.Л. Босовой за 9 класс есть глава «Основы алгоритмизации». Одним из параграфов является «Конструирование алгоритмов. Рекурсивный алгоритм». При этом рекурсивный алгоритм рассматривается как вспомогательный алгоритм. В этом же параграфе приведено несколько примеров использования рекурсивного алгоритма: Ханойская башня, снежинки Коха.
Учебник Л.Л. Босовой по информатике за 11 класс содержит главу «Алгоритмы и элементы программирования». Однако о рекурсивных алгоритмах в данной главе не упоминается.
Учебник И.Г. Семакина за 9 класс содержит главу «Управление и алгоритмы». В самой главе о рекурсивных алгоритмах нет сведений. Но к главе есть дополнение и в нём описаны направления использования рекурсивных процедур. Также здесь приведены несколько примеров.
Учебник И.Г. Семакина за 10 класс содержит главу 2программирование и обработка информации». В этой главе рассматриваются алгоритмы, структура алгоритмов, элементы языков программирования. Рекурсивные алгоритмы в данном разделе не затрагиваются.

Важно! Это только фрагмент работы для ознакомления
Скачайте архив со всеми файлами работы с помощью формы в начале страницы

Похожие работы