Гидравлика и гидропневмопривод. Гидравлические и пневматические системы транспортно-технологических машин и комплексов. Курсовая с практикой Технические науки

Курсовая с практикой на тему Гидропривод вращательного движения

  • Оформление работы
  • Список литературы по ГОСТу
  • Соответствие методическим рекомендациям
  • И еще 16 требований ГОСТа,
    которые мы проверили
Нажимая на кнопку, я даю согласие
на обработку персональных данных
 

Содержание:

 

Введение 3
1. Исходные данные для расчета гидропривода вращательного движения 7
2. Описание принципиальной гидравлической схемы 8
3. Расчет объемного гидропривода 10
3.1 Определение мощности гидропривода и насоса 10
3.2 Выбор насоса 10
3.3 Определение внутреннего диаметра гидролиний, скоростей движения жидкости 12
3.4 Выбор гидроаппаратуры, кондиционеров рабочей жидкости 14
3.5 Расчет потерь давления в гидролиниях 16
3.6 Расчет гидромоторов 20
3.7 Тепловой расчет гидропривода 23
Заключение 27
Список литературы 28

  

Введение:

 

Гидроприводом называется совокупность гидравлических механизмов, предназначенная для приведения в движение механизмов и машин посредством рабочей жидкости.
Гидропривод, в состав которого входит гидравлический механизм, в котором рабочая жидкость находится под давлением, с одним или более объёмными гидроприводами называется объёмным.
Структурно объёмный гидропривод состоит из гидропередачи, устройств управления, вспомогательных устройств и гидролиний.
В состав гидропередачи входят объёмные насосы (преобразователи механической энергии приводящего двигателя в энергию потока рабочей жидкости) и объёмные гидродвигатели (преобразователи энергии потока рабочей жидкости в механическую энергию органа машины).
К устройствам управления относятся: гидрораспределители (для изменения направления потока рабочей жидкости и обеспечения требуемой последовательности включения в работу гидродвигателей); гидроклапаны давления (для изменения или поддержания требуемого давления в гидросистеме); гидроаппараты управления расходом (дросселей, регуляторы расхода, направляющие клапаны, делители потоков и др.); гидроусилители (для управления работой других элементов гидроприводов с одновременным усилением мощности сигнала управления за счёт внешнего источника питания).
Вспомогательные устройства обеспечивают надёжную работу гидропривода. К ним относятся кондиционеры рабочей жидкости (гидроёмкости, теплообменники, фильтры), уплотнительные устройства, обеспечивающие герметизацию гидросистемы, гидравлические реле давления и др.
Гидролиниями все элементы гидропривода объединяются в единую гидросистему. В гидроприводе различают гидролинии: всасывающую, где жидкость движется к насосу; напорную, где жидкость движется от насоса; сливную с движением жидкости от гидродвигателя в гидробак; управления, где жидкость движется к устройствам управления и регулирования; дренажную, по которой отводятся утечки от гидроагрегатов в гидробак.
Современный уровень развития строительного и дорожного машиностроения характеризуется широким применением объемного гидравлического привода. Широкое применение гидравлического привода объясняется целым рядом его преимуществ по сравнению с другими типами привода:
1. Высокая компактность при небольших массе и габаритных размерах гидрооборудования по сравнению с массой и габаритными размерами механических приводных устройств той же мощности, что объясняется отсутствием или применением в меньшем количестве таких элементов, как валы, шестеренные и цепные редукторы, муфты, тормоза, канаты и др.
2. Возможность реализации больших передаточных чисел. В объемном гидроприводе с использованием высокомоментных гидромоторов передаточное число может достигать 2000.
3. Небольшая инерционность, обеспечивающая хорошие динамические свойства привода. Это позволяет уменьшить продолжительность рабочего цикла и повысить производительность машины, так как включение и реверсирование рабочих органов осуществляются за доли секунды.
4. Бесступенчатое регулирование скорости движения, позволяющее повысить коэффициент использования приводного двигателя, упростить автоматизацию привода и улучшить условия работы машиниста.
5. Удобство и простота управления, которые обусловливают небольшую затрату энергии машинистом и создают условия для автоматизации не только отдельных операций, но и всего технологического процесса, выполняемого машиной.
6. Независимое расположение сборочных единиц привода, позволяющее наиболее целесообразно разместить их на машине. Насос обычно устанавливают у приводного двигателя, гидродвигатели – непосредственно у исполнительных механизмов, элементы управления – у пульта машиниста, исполнительные гидроаппараты – в наиболее удобном по условиям компоновки месте.
7. Надежное предохранение от перегрузок приводного двигателя, системы привода, металлоконструкций и рабочих органов благодаря установке предохранительных и переливных гидроклапанов.
8. Простота взаимного преобразования вращательного и поступательного движений в системах насос – гидромотор и насос – гидроцилиндр.
9. Применение унифицированных сборочных единиц (насосов, гидромоторов, гидроцилиндров, гидроклапанов, гидрораспределителей, фильтров, соединений трубопроводов и др.), позволяющее снизить себестоимость привода, облегчить его эксплуатацию и ремонт, а также упростить и сократить процесс конструирования машин.
В качестве рабочих жидкостей здесь применяются минеральные масла, которые одновременно обеспечивают смазку деталей гидропривода, повышает их износостойкость.
Однако, гидропривод имеет некоторые недостатки . В следствии проникновения воздуха в рабочую жидкость его движение может сопровождаться толчками, что отрицательно влияет на равномерность движений рабочих органов.
Сжатие и расширение труб, возникающие при гидравлических ударах в процессе быстрых переключений, расшатывают соединения и уплотнения в узлах гидропривода. Во избежание больших утечек жидкости, зазоры между сопрягаемыми деталями должны быть минимальными, а это обеспечивается высокой точностью их изготовления, что приводит к повышению стойкости гидропривода. Уплотнения не обеспечивают полной герметизации узлов, что уменьшает КПД и загрязняет рабочее место.
Одним из недостатков также является изменение вязкости рабочей жидкости в зависимости от изменения температуры, что нарушает работу гидропривода.
Однако в настоящее время разработаны жидкости с высоким индексом вязкости и созданы уплотнения, которые обеспечивают длительную работу без утечек. А выполнение узлов и соединений гидропривода на высоком техническом уровне и надлежащий уход во время эксплуатации почти полностью устраняет приведённые выше недостатки гидропривода.

Не хочешь рисковать и сдавать то, что уже сдавалось?!
Закажи оригинальную работу - это недорого!

Заключение:

 

В курсовой работе был произведен расчет гидропривода вращательного движения на примере гидросистемы поворота платформы автокрана. Была выбрана гидроаппаратура, насос, гидроцилиндр и гидробак с теплообменником.
Отклонение действительного значения скорости от заданного не превышает ±10%. Отклонение действительного значения усилия от заданного не превышает ±10%.

   

Фрагмент текста работы:

 

На поворотной платформе размещается рабочее оборудование крана с приводом от гидромотора. Рабочая жидкость от насоса Н подается через центральное вращающееся соединение к секционному гидрораспределителю Р4 и одновременно к предохранительным клапанам КП1, а также в гидролинию управления гидрозамыкателями тормозов через золотник Р2 с электроуправлением. Золотник Р1 установлен также в гидролинии управления предохранительного клапана.
При отсутствии напряжения в электромагнитах золотник Р1, гидроцилиндр Ц гидроразмыкателя тормозов и гидролиния управления предохранительного клапана КП2 соединяются с дренажной линией. При этом тормоза механизмов замкнуты, а рабочая жидкость подается насосом через переливной гидроклапан в сливную гидролинию, откуда через фильтр Ф сливается в гидробак.
При подаче напряжения на электромагниты золотников Р1, Р2 они переключаются в рабочую позицию. В этом случае рабочая жидкость через гидрораспределитель Р4 поступает в сливную гидролинию и подается к дополнительным золотникам, а слив через предохранительный клапан КП2 становится возможным только при превышении давления его настройки.
При перемещении золотника гидрораспределителя Р4 перемещается дополнительный золотник, вследствие чего переливной гидроклапан закрывается, рабочая жидкость от насоса поступает к гидромотору М и одновременно к гидроцилиндру тормоза, размыкая тормозное устройство. Противоположная полость гидромотора при этом соединяется со сливной гидролинией.

3. Расчет объемного гидропривода
3.1 Определение мощности гидропривода и насоса

Полезная мощность гидродвигателя вращательного действия (гидромотора) Nгдв , кВт:

Nгдв= М·ωм =М·2π·nм, (1)

где М – момент на валу гидромотора, кН·м;
ω – угловая скорость вращения вала гидромотора, с-1;
nм – частота вращения вала гидромотора, об/с.
Nгдв =0,5·2·3,14·10=31,4 кВт
Полезная мощность насоса с учетом потерь энергии при ее передаче Nнп , кВт:

Nнп= kзу ·kзс ·Nгдв ,

Важно! Это только фрагмент работы для ознакомления
Скачайте архив со всеми файлами работы с помощью формы в начале страницы

Похожие работы