Контрольная работа на тему Изучение концепции использования функции в природе и технике
-
Оформление работы
-
Список литературы по ГОСТу
-
Соответствие методическим рекомендациям
-
И еще 16 требований ГОСТа,которые мы проверили
Скачать эту работу всего за 290 рублей
Ссылку для скачивания пришлем
на указанный адрес электронной почты
на обработку персональных данных
Содержание:
ВВЕДЕНИЕ 3
1. Понятие функции 5
2. Использование функции. 13
2.1 Применение показательной функции в жизни 13
2.2 Место функции в курсе математики 15
2.3 Место функции в технике и физике 18
ЗАКЛЮЧЕНИЕ 23
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 25
Введение:
Математика – один из моиx самых любимых предметов. Я считаю, что ни одно явление, ни один процесс в окружающем мире не могут быть изучены без математического описания. Одним из инструментов описания реального мира является функция.
Современная математика знает множество функций, и у каждой своей неповторимый облик, как неповторим облик каждого из миллиардов людей, живущих на земле.
Мы тоже являемся функцией многих переменных, одна из которых – время. Проходят годы и мы меняемся. Мы также зависим от своей наследственности, от книг, которые мы читаем, от температуры окружающей нас среды и от многих других факторов.
Однако при всей непохожести одного человека на другого у каждого есть руки и голова, уши и рот.
Точно так же облик каждой функции можно представить сложенным из набора характерных деталей. В них появляются основные свойства функций.
На уроках математики все знакомятся с различными функциями, их свойствами и графиками, но мало знают о том, где в реальной жизни можно встретиться с этой моделью, и как человек использует свойства функций в своей практической деятельности.
Проблема. На уроках математики мы познакомились с различными функциями, их свойствами и графиками, но мы мало знаем о том, где в реальной жизни можно встретиться с этой моделью, и как человек использует свойства функций в своей практической деятельности.
Актуальность темы. Реальные процессы обычно связаны с большим количеством переменных и зависимостей между ними. Описать эти зависимости можно с помощью функций. Знание свойств функций позволяет понять суть происходящих процессов, предсказать ход их развития, управлять ими. Изучение функций является актуальным всегда.
Цель. Исслeдовать и изучить связь функций с явлениями окружающего мира и практической деятельностью человека.
Исходя из цели, я поставил перед собой следующие задачи:
— изучить понятие функции;
— рассмотреть показательную функцию в жизни;
— определить место функции в курсе математики;
— определить Место функции в технике и физике.
Методы исследования анализ и синтез.
Гипотеза исследования заключается в том, что функции- неотъемлемая часть нашей жизни. Они окружают нас повсюду.
Объект исследования математические функции и их приложения.
Предмет исследования функциональные зависимости в окружающей жизни.
Практическая значимость проекта
Работа позволяет развивать интерес школьников к урокам математики, убеждает в высокой практической значимости математической науки, формирует представление о взаимосвязи математики с объектами реального мира, убеждает в необходимости применять полученные знания на практике и поможет желающим расширить свои знания о функциях и их приложениях.
Заключение:
ЗАКЛЮЧЕНИЕ
Понятие функции является одним из основных понятии математики вообще. Оно не возникло сразу в таком виде, как мы им пользуемся сейчас, а как и другие фундаментальные понятия прошло длинный путь исторического развития. Идея функциональной зависимости восходит к древнегреческой математике.
Впервые термин «функция» вводит в рассмотрение знаменитый немецкий математик и философ Лейбниц в 1694 г. Однако, этот термин (определения он не дал вообще) он употребляет в узком смысле, понимая под функцией изменение ординаты кривой в зависимости от изменения ее абсциссы. Таким образом, понятие функции носит у него «геометрический характер».
Ученик Лейбница Иоганн Бернулли пошел дальше своего учителя. Он дает более общее определение функции, освобождая последнее от геометрических представлений и терминов: «функцией переменной величины называется количество, образованное каким угодно способом из этой величины и постоянных».
Выводы:
1. Математические функции являются одним из основных понятий в различных областях науки и техники.
2. Математическое понятие функции широко используется в описании и изучении процессов и явлений реального мира.
3. Широкое развитие физики, химии, биологии, авиации, сотовой связи и вообще техники было бы невозможным без понятия функции.
4. Функциональные зависимости присутствуют во всех сферах жизни человека.
Цель работы достигнута и выдвинутая гипотеза о том, что функции – неотъемлемая часть нашей жизни, они окружают нас повсюду — нашла свое подтверждение.
Графики и функции широко распространены в нашей жизни, так как они содержательные, наглядные и удобные для передачи и восприятия информации, дальнейшей обработки информации.
Таким образом, математика служит основой естественных и технических наук, без нее ныне не мыслима ни одна современная технология. Кроме того, математика активно внедряется в экономику. Приступая к данному исследованию, мы ставили перед собой задачу: применение производной на нахождение экстремальных значений функции в различных областях практической деятельности. Для этого:
были выбраны задачи из сборников задач по физике и подготовке к единому государственному экзамену, в которых требовалось найти наименьшее или наибольшее значение;
выполнено решение подобранных задач;
выполнена классификация задач по разделам физики, математики и экономики.
Фрагмент текста работы:
1. Понятие функции
Функция — это одно из важнейших математических понятий. Функция — зависимость переменной у от переменной x, если каждому значению х соответствует единственное значение у. Переменную х называют независимой переменной или аргументом. Переменную у называют зависимой переменной. Все значения независимой переменной (переменной x) образуют область определения функции. Все значения, которые принимает зависимая переменная (переменная y), образуют область значений функции.
Графиком функции называют множество всех точек координатной плоскости, абсциссы которых равны значениям аргумента, а ординаты — соответствующим значениям функции, тоесть по оси абсцисс откладываются значения переменной x, а по оси ординат откладываются значения переменной y. Для построения графика функции необходимо знать свойства функции.
Основные свойства функций.
1) Область определения функции и область значений функции.
Область определения функции — это множество всех допустимых действительных значений аргумента x (переменной x), при которых функция y = f(x) определена.
Область значений функции — это множество всех действительных значений y, которые принимает функция.
В элементарной математике изучаются функции только на множестве действительных чисел.
2) Нули функции.
Нуль функции – такое значение аргумента, при котором значение функции равно нулю.
3) Промежутки знакопостоянства функции.